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Abstract

A growing literature finds evidence that flood risk salience varies over time, spiking
directly following a flood and then falling off individuals’ cognitive radar in the following
years. In this paper, we provide new evidence of salience exploiting a hurricane
cluster impacting Florida that was preceded and followed by periods of unusual calm.
Utilizing residential property sales across the state from 2002 through 2012, our main
estimate finds a salience impact of -8%, on average. The salience effect persists
when we base estimation only on spatial variation in prices to limit confounding from
other simultaneous changes due to shifting hedonic equilibria over time. These effects
range from housing prices decreases of 5.4% to 12.3% depending on the year of sale.
Understanding flood risk salience has important implications for flood insurance and
disaster policy, the benefits transfer literature, and, more broadly, our understanding of
natural disaster resilience.
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1 Motivation

A significant and broad literature has assessed the impact of flooding on home prices. In

the spirit of Rosen (1974), the aim is to identify willingness to pay to avoid flood risk through

the capitalization of underlying flood risk on home prices using property sales data. All

else equal, homes at higher risk of flooding should be priced lower to reflect the underlying

environmental threat. Existing literature has estimated the impact in a variety of geographic

contexts. United States based research often defines flood risk as high if a property is

located within the National Flood Insurance Program’s Special Flood Hazard Areas (SFHAs),

reflecting an average flood risk of at least 1 in 100 per year. Empirical prices for homes within

the SFHA are typically lower.1 A meta-analysis by Daniel, Florax, and Rietveld (2009) finds

an overall negative but small price impact.

As long as homebuyers are fully attentive to the underlying property-specific flood risks

associated with the homes that they purchase, home price differentials across flood zones

return the marginal willingness to pay (MWTP) to avoid flood risk. The estimated MWTP

can then be applied in cost-benefit analyses of many policies and projects relating to public

flood mitigation. However, a recent stream of literature asserts that flood risk might not

be salient. In empirical work, the term salience broadly encompasses several channels

through which individuals are understanding and updating their beliefs surrounding flood

risk probability.

First, it is possible that individuals, due to the cognitive complexities and costs of the

home buying process, may be rationally inattentive to flood risk when making their purchasing

decision (Sallee, 2014; Matějka and McKay, 2015). Second, individuals may be irrationally

1For example, Harrison, T. Smersh, and Schwartz (2001) find a 5% price reduction in flood-prone homes
in Alachua County, Florida. Bin et al. (2008) find that coastal flood zone homes are 11% lower in price,
relative to lower flood risk homes in coastal New Hanover County, NC. Assessing inland flood risk, Posey
and Rogers (2010) find a 8.6% price premium for low flood risk homes in St. Louis County, Missouri . In
addition, Zhang (2016) finds flood-prone homes sell for 5.9% less, on average, in the Fargo, ND-Moorhead,
MN metro area. However, some literature finds a positive price premium for high flood risk, especially in
coastal areas including Bin and Kruse (2006) in Carteret Country, NC and Atreya and Czajkowski (2016) in
Galveston, TX, even after controlling for water-related amenities. Some have argued that the price premium
may still reflect the difficulty in controlling for the amenity value of proximity to water (Bin et al., 2008).
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inattentive (Reis, 2006). Lastly, individuals’ perception of flood risk may be different from the

true flood risk of their location. This may change over time as events such as natural disasters

cause the individual to update their beliefs. For example, in a 2017 door-to-door survey,

Bakkensen and Barrage (2017) find that 70% of respondents in a coastal Rhode Island survey

underestimate the flood risk of their specific properties. This flood risk probability channel is

consistent with existing literature (Bin and Polasky, 2004; Bin and Landry, 2013; Gallagher,

2014). While the specific channel through which salience operates is interesting in its own

right, we are unable to separately identify these channels in our data. For example, a change

in attention to flood risk (reflected through housing prices) is consistent with an upward

revision of an individual’s (subjective) belief surrounding flood risk probability, and/or a

reduction in the cost to gather information, leading to potential reductions in levels of rational

or irrational inattention to flood risk. In this paper we thus employ a broad definition of

salience that encompasses housing market responses that arise through any of the above

channels.

Regardless of the exact mechanism through which salience operates, the lack of flood risk

salience is one plausible explanation for why the literature has, in some cases, found relatively

small price differentials in flood-prone versus non-flood-prone homes.2 Exploring more,

researchers have exploited randomly occurring, significant flood events, typically through

a difference-in-differences approach, and have found that recent flood events can trigger

attention, causing flood risk salience to vary over time.3 In order to avoid conflating price

drops due to flood related damages with flood salience, approaches often analyze prices of

near-miss homes that were not directly inundated. Bin and Polasky (2004) find a price drop

of about 8.3% for homes in Pitt Country, NC following Hurricane Floyd. Hallstrom and

Smith (2005) use Hurricane Andrew to estimate the impact in Lee County, FL, a near-miss

2We define “small” as relative to the difference in expected flood losses that would be rationally capitalized
into home price by an attentive buyer. An additional explanation for small housing price differentials across
flood risk areas is that flood insurance premiums are below actuarially fair rates and the full value to avoid
flood risk is not reflected in housing prices.

3Again, this change in flood risk salience is consistent with both changes in subjective flood risk belief
and/or factors that impact rational or irrational inattention to flood risk exposure.
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location. They find that properties in flood zones experienced a 19% decline in price following

the event relative to non-flood zone properties in the same near-miss county. Kousky (2010),

utilizing a repeated-sales approach, finds values of properties located near rivers fell by 6-10%

after a significant flood event in St. Louis County, MO. While the salience effect of recent

events is strong, it appears impermanent. Atreya, Ferreira, and Kriesel (2013) find that prices

fell significantly but only temporarily following a significant flood event in Dougherty County,

GA in 1994: the flood risk discount for 100-year floodplain properties vanishes 4 to 6 years

after the flood. Lastly, Bin and Landry (2013) identify cumulative price drops of between 6%

and 20.2% following Hurricanes Fran and Floyd in Pitt Country, NC but diminishing to zero

after 5 to 6 years.

In this paper, we estimate flood risk salience using a property value hedonic approach.

We accomplish this by comparing the change in sales prices of houses in high risk floodplains

before and after a period of major hurricanes, and corresponding flood events, in Florida

to any price change experienced by houses in low risk floodplains.4 To isolate the impact

of an information change separately from damages incurred as a result of the floods, we

follow previous literature in focusing the analysis on a subset of near-miss houses, which

belong to areas that were near but not impacted by these disasters. If homeowners in low

risk areas experience smaller information updates relative to those in high risk areas, then

our difference-in-differences (DD) estimate recovers (a lower bound for) flood risk salience.

To further control for the impact of unobserved house-price characteristics that could send

houses in high and low risk flood zones on different price trajectories, we employ a difference-

in-difference-in-differences (DDD) design by comparing the DD estimate for our group of

near-miss sales to one based on sales in areas that are far from the impacted areas, a group

that we refer to as never-hit. Lastly, we assess the robustness of our salience estimates using

a difference-in-differences estimator based only on spatial variation in housing prices. This

spatial difference-in-differences estimator recovers a salience estimate for each year after the

4We use low risk floodplains since no location can technically be at zero risk of flooding. See, for example,
FEMA: https://www.fema.gov/national-flood-insurance-program.
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hurricane event using post-event data only and compares the differences in prices between

the A and X flood zones in near-miss counties with the same differences in the never-hit

group. By relying on spatial variation only, we are able to recover a salience estimate that is

robust to time-varying hedonic price functions (Kuminoff and Pope, 2014).5

We contribute to the existing literature in three ways. First, our salience estimate is

based on the entire sample of residential property sales in Florida from 2002 through 2012.

This provides new estimates for a large geographic area that can be compared to estimates

from other areas within Florida and throughout the US. Second, our triple-differences design

builds upon the previous literature’s use of near-miss events in a DD framework by exploiting,

as an additional control group, houses in never-hit counties, defined as those in areas that

were adjacent to near-miss locations but not impacted by flooding. Third, our spatial DD

estimator addresses the concern highlighted by Kuminoff and Pope (2014) surrounding the

capitalization of shocks to public goods (or bads) over time in a hedonic approach. Namely,

the exogenous shocks may alter the underlying hedonic equilibrium and lead to a divergence

between price capitalization and underlying MWTP. In the context of flood risk, it is possible

that the flood event, itself, may change the makeup of the buyers and sellers in the market

just before versus after an event. Capitalization of the event will only represent MWTP if the

hedonic equilibrium does not change over time.6 If heterogeneity across individual MWTP

exists in the market, the housing price capitalization of the event for near-miss areas may

incorporate both changes to flood risk salience as well as changes in the mix of homebuyers

(and their preferences). Existing empirical evidence suggests that this assumption may not

hold as some have found heterogeneity in mobility and migration across both race and income

following intense disasters (Smith et al., 2006, Landry et al., 2007, Groen and Polivka, 2010,

5Our identification strategy isolates the impact of the Florida hurricane landfalls in 2004 and 2005. To
the extent that information about other prominent hurricanes during this period, such as Hurricane Katrina
in 2005, is disseminated by the national media across Florida, this would be differenced out by our empirical
design. Thus, we cannot identify the impact of other hurricane events during this period but our results
will not be confounded by other events assuming that the information on these out-of-state events is evenly
transmitted across Florida.

6See Kuminoff and Pope (2014) for the conditions under which the hedonic equilibrium does not change.
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Strobl, 2011, Deryugina, Kawano, and Levitt, 2014).

We find salience impacts ranging from -3.2% to -4.4% using a DD strategy that compares

housing prices before and after flood events. Our main DDD specification finds larger

impacts of up to -8% overall, and up to -14.3% when allowing the estimates to vary by

year. In addition, our spatial DD estimates are generally larger than the pre- and post- DD

estimates and comparable to our triple-differences estimates, providing evidence that the

pre- versus post- DD framework may suffer from the Kuminoff and Pope (2014) critique. We

perform placebo checks that randomize treatment exposure in both geographic and temporal

dimensions, and confirm that our findings are causal. Taken together, our results using various

quasi-experimental approaches, including one that is robust to shifting hedonic equilibria, all

support the finding of a salience effect with respect to flood risk in Florida.

We highlight some limitations of work. Evident in our previous description of salience,

salience impacts may operate through many channels. In this paper, we do not (and cannot)

distinguish between these various channels. In addition, it remains an open question as to

how the magnitude of post-disaster flood risk salience relates to rational risk perception. For

example, salience as a result of a flood event may lead homebuyers to rationally perceive the

true underlying flood risk if flood risk was previously underestimated; on the other hand,

risk can be overestimated due to over-reaction. While understanding this and the potential

contributions of each channel is important, we leave formal analysis of this for future work.

The rest of the paper proceeds as follows. Section 2 lays out our basic theoretical and

empirical models. In section 3, we first discuss our data sources. Next, we provide summary

statistics and figures that assess the validity of our identifying assumptions. Section 4 presents

our results and section 5 concludes.
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2 Model

In his seminal paper, Rosen (1974) provides the theoretical link to estimate consumer’s

Marginal Willingness to Pay (MWTP) for (dis)amenities through the implicit prices recovered

from regressing housing prices on house and neighborhood characteristics. Suppose a house

is characterized by a bundle of attributes Z, where the price of the house is P (Z). Given

prices, a consumer with income Y chooses how to allocate her income between purchasing a

house of given characteristics and other consumption x in order to maximize her utility. The

consumer’s problem is characterized by the following

max
Z,x

U(Z, x) subject to Y = x+ P (Z) (2.1)

where prices and income are normalized to the price of the numeraire good x. Substituting the

budget constraint into the utility function and then differentiating, the first order condition

with respect to one of the characteristics of interest, e.g. z1 ∈ Z, is given by

∂P (Z)

∂z1
=

∂U/∂z1
∂U/∂x

(2.2)

The first order condition in equation (2.2) shows that the slope of the hedonic price function

with respect to characteristic z1 is equal to the consumer’s willingness to trade off additional

units of that characteristic with all other consumption (i.e., her marginal rate of substitution).

Embedded in this framework is the assumption that households are perfectly informed of the

characteristics of a given house.7 If information is imperfect, however, the estimated implicit

prices of housing characteristics may recover a biased estimate of marginal willingness to pay.

That consumers do not have perfect information over the attributes that they care about

suggests that the attribute may not be salient. Moreover, the level of attribute salience may

vary over time, with attention on dis-amenities, such as pollution or natural disaster risk,

7Two other crucial assumptions are that households face no price discrimination or moving costs.
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peaking following an information shock such as a toxic spill or hurricane. In this case, if one

were to estimate MWTP before an information shock and then compare it to that estimated

after the information shock, then the difference in estimated marginal willingnesses to pay

would be attributed to a change in salience assuming that all else is held constant.

We apply this framework to our context of flood risk. Let zoneA be an indicator equal

to 1 if a house is located in a “high risk” floodplain, with at least a 1 in 100 probability of

inundation in a given year (i.e. Zone A), and 0 if it is located in a “low risk” floodplain with

an annual risk of flooding less than 1 in 100 but greater than 1 in 500 (i.e. Zone X). We

separately distinguish this flood risk variable from all other characteristics, Z, that describe

the house. Following the literature, we assume the hedonic price function P (·) is log-linear in

its characteristics,

lnPj = β0 + β1zoneAj + Z ′jγ + νj (2.3)

The term νj represents all other characteristics of the house that impact its price but are not

observed by the researcher.

The implicit price of locating in the “high risk” floodplain (relative to the low risk flood-

plain) is measured by β1. The parameter, assuming perfect information, can be interpreted

as the MWTP to avoid flood risk areas according to hedonic theory.8 Note that since Zone X

is an area with low and not zero flood risk, we are more precisely estimating the MWTP

to avoid high versus low flood risk areas. From a hydrological perspective, no locations are

considered at zero risk of flood as localized intense downpours could potentially occur.9 If

one were instead able to make comparisons to an area with zero flood risk, the estimated

MWTP to avoid high risk flood plains would be larger. In this way, the recovered MWTP

to avoid flood risk using Zone X houses as a control group is likely to be an underestimate.

Moreover, any use of Zone X houses as a comparison group for Zone A houses will also have

8Given that flood risk is a disamenity, one would expect β1 < 0.
9FEMA’s official stance is that “no home is completely safe from potential flooding devastation”

(https://www.fema.gov/national-flood-insurance-program) and designates zones as low risk but not as
no risk. This is also true in other nations (e.g., Duž́ı et al. (2017)).
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implications for our salience estimates, which we later discuss.

Now suppose one focused on the zone A houses and measures the discount required to

live in this 100-yr floodplain both before and after a large flood event. Within the timeframe

examined in this article, changes in the underlying flood risk can be approximated as zero.10

Assuming that the true flood risk remains unchanged across time, the difference in the

estimated discounts could be attributed to a change in the saliency of the flood risk due

to the event.11 The large flood events we exploit occur during the mid-2000’s and housing

transactions data span the time period from 2002 to 2012.12 With the housing bubble and

Great Recession that followed in 2009, this was a tumultuous time for the housing market.

As such, a naive comparison of housing prices before and after our flood events may capture

other unobserved changes in the housing market that occurred over the same time period.

For example, if the time period after the hurricane event coincided with one of depressed

housing prices due to the housing market crash, then one would over-attribute the price drop

to salience as it would include the fall in prices that would have occurred in absence of the

hurricane event as a result of the recession.

In general, the problem of omitted variables is of first order concern in many property

value hedonic analyses. To control for unobserved factors that are both time-invariant and

varying, we follow previous work by employing a difference-in-differences (DD) framework

that compares the changes in sales price experienced by the original houses of interest (in Zone

A) with prices changes of a control group of houses sold over the same period. Specifically, we

look to price changes experienced by houses in the low-risk floodplain, Zone X, to proxy for

what would have happened to high-risk flood plain houses in absence of the flood event as a

way to identify salience impacts while controlling for unobserved, correlated time trends. The

10This is unlikely true in the long run in light of climate change.
11To estimate the saliency effect in the context of natural disasters, researchers have used exogenous disaster

shocks such as hurricanes to induce changes in information that alter risk valuation in order to capture
salience. More generally, additional work has measured salience due to policies or programs that impact
information.

12We describe our data in more detail in section 3.
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following gives the regression specification that indexes each house j with the time of sale, t,

lnPj,t = β0 + β1zoneAj + β2Postt + β3zoneAj × Postt + Z ′j,tγ + θt + θj + νj,t (2.4)

where Postt is an indicator that is equal to 1 if a house is sold after the event, and 0 otherwise.

The DD estimate β3 returns the change in prices of houses in the high-risk floodplain after

the flood event, netting out the price changes experienced by houses in the low-risk floodplain.

One can use the potential outcomes framework by Rubin (1974) to show that this relationship

is causal as long as the changes in sales prices for those in the low-risk floodplain (i.e. the

control group) represent what would have happened to prices of houses in the high-risk

floodplain, had the event not occurred. We provide evidence in the subsequent section of the

validity of this assumption. In addition, the specification includes year fixed effects θt and

spatial fixed effects θj at various geographic levels from region to census tract to respectively

control for time trends and unobserved, time-invariant neighborhood characteristics.

Lastly, given the destructive nature of natural disasters, these types of events can lead to

direct damages as well as increased salience, both of which would negatively impact house

price. Thus, a common strategy to isolate the impact of saliency is to focus on areas that

were near, but not directly impacted by, the natural disaster, i.e. near-miss areas. We follow

this strategy to identify salience by focusing on a sample of near-miss houses, defined as

those in counties that are adjacent to counties that were directly damaged by the event.

Consistency issues aside, β3 identifies a salience effect under the assumption that households

in the high-risk floodplain internalize additional information from flooding in neighboring

counties, while those in the low-risk floodplain do not. This is perhaps a strong assumption

as houses in the X zone abutting an A-X boundary may feel similarly threatened at the onset

of a flood event nearby. In the extreme case, if all houses in the X zones of near-miss counties

experienced a similar change in flood risk salience, our estimate of salience that uses X zone

houses as a control group would return a salience estimate that is close to 0. In practice,

10



the spillover effect is likely to be somewhere in between, and our estimate is likely to be an

under-estimate of the true salience impact. In robustness checks, we empirically assess the

magnitude of this spillover effect.

While the DD estimate from equation (2.4) can control for many time-varying, unobserved

factors, concern may still arise if zone-specific impacts cause the price trajectories of houses

in zones X and A to diverge in response to the flooding event. An example would be if the

flood event propagated local flood mitigation efforts, where efforts were focused on areas that

are considered to be high risk (i.e. the A-zone areas). In this case, our DD estimate based

on the price difference between sales in A and X zones over time would capture additional

differences due to these mitigation efforts.

To deal with this, we include a third source of variation. Specifically, we use houses in

non-adjacent counties (that were also not in directly impacted counties) as an additional

control group, where we will refer to these houses as being in the never-hit group. If an

unobserved, zone-specific effect were triggered as a result of the flood event, the relative

A-X price difference of this never-hit group would capture such changes. We implement this

using a difference-in-differences-in-differences (DDD), or a triple-differences approach. The

regression specification for the DDD approach is the following,

lnPj,t =β0 + β1zoneAj + β2Postt + β3 · zoneAj × Postt (2.5)

+ β4NearMissj + β5 ·NearMissj × Postt + β6 · zoneAj ×NearMissj

+ π · zoneAj ×NearMissj × Postt + Z ′j,tγ + θt + θj + νj,t

where NearMissj is an indicator variable that equals to 1 if the house belongs to a county

that was adjacent to one that sustained large flood-related damages, and 0 otherwise. The

parameter π returns the DDD estimate that compares the DD estimate for houses in the

near-miss group to that from the never-hit group.
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The clear limitation of this strategy using a group of home sales that is one county

removed from counties that are directly impacted is that this group may also experience a

change in flood risk information that affects the salience of flood risk. In other words, as in

the case with the X and A zone comparison, there may be spillovers that affect the prices

of sales that we considered to be in a control group. If households in never-hit counties

similarly revise their risk perceptions upward as a result of the flood event (i.e. perceive

areas to be riskier), then our DDD estimator would underestimate salience from differencing

out the negative impact that salience would have on home prices. On the other hand, the

impact could be overestimated if the event causes households in never-hit areas to revise

risk perceptions downward. This increases housing prices, holding all else constant, and

causes our DDD estimate to overstate the salience impact upon removing the positive price

impact. While we cannot rule out a downward revision of flood risk, the majority of the

literature finds that individuals underestimate flood risk and revise estimates upward after

an event. As such, we think that our salience estimates using DDD are more likely to

suffer from being underestimated. In section 4, we assess the amount by which the DDD

estimate underestimates salience using alternative control groups that are further removed

from impacted areas and are less likely to receive an information treatment.

We lastly highlight an additional concern. Similar to strategies that use fixed effects,

consistent estimation through difference-in-differences or triple-differences estimation often

involves a change in the amenity of interest over time. While amenity variation over time

within a location can help control for time-invariant unobserved factors, price changes over

time potentially mixes information from different hedonic equilibria, which causes a wedge

between MWTP and the simple change in price (over time) given a change in an amenity of

interest. That is, letting superscripts index time and assuming z1 is our variable of interest,

∂U/∂z1
∂U/∂x

6= P 1(z11 , Z)− P 0(z01 , Z)

z11 − z01
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The expression to the right in the equation above is formally known as a “capitalization effect.”

Kuminoff and Pope (2014) demonstrates that MWTP and capitalization are only equal under

certain conditions that ensure the equilibrium hedonic price function remains unchanged

even as the amenity of interest changes over time. Intuitively, the hedonic equilibrium is

formed out of the interactions of buyers and sellers within the housing market. Given a

widespread, exogenous change in the amenity (e.g. from a natural disaster or a policy),

households are likely to re-optimize over time by moving, thereby potentially altering the

underlying hedonic price function. In our flood context, given the growing literature on

post-disaster migration discussed in section 1, residents in an area before a natural disaster

may be different than those who choose to live in the area afterwards. If the amenity change

causes a new post-disaster population (with different preferences for flood risk), the hedonic

equilibrium may vary over time, thereby confounding changes in flood salience with changes

in underling market participant preferences.13

To avoid the assumption of time-invariant hedonic gradients, we additionally estimate

salience following recent empirical applications by using only spatial variation in the amenity of

interest in a spatial difference-in-differences strategy (Kuminoff and Pope, 2014; Muehlenbachs,

Spiller, and Timmins, 2016; Haninger, Ma, and Timmins, 2017). Focusing only on sales that

occur after the hurricane event, we alter the traditional DD specification to compare the

differences in prices between the A and X flood zones in near-miss counties with the same

differences in our never-hit group, composed of adjacent counties that are even farther away

from impacted counties. We then estimate this impact for each year after the event of interest

13In general, sorting can also occur across the amount of perceived risk if people with higher MWTP are
systematically more likely to have higher risk perceptions. While we cannot control for this type of sorting
across risk perception, we note this as further motivation that the assumption of a time-constant hedonic
price function may be violated.
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using the following specification,

lnPj,t = β0,t + β1,t · zoneAj + β2,t ·NearMissj (2.6)

+ β3,t · zoneAj ×NearMissj + Z ′j,tγt + θt + θj + νj,t

The spatial DD necessarily means relying on comparisons of different geographic areas for

both dimensions of the difference-in-differences framework. The success of this strategy

depends on whether hedonic price functions are comparable across space after various spatial

controls are included. In the case of this paper, one might ask whether near-miss areas

are comparable to never-hit areas. In the next section, we assess the spatial analog of the

parallel trends assumption to check whether price functions in different geographic locations

after controls trend in a similar manner. Ultimately, allowing the salience parameters to

vary by year avoids assuming that the hedonic price function is constant over time. We thus

additionally provide empirical support in the following section that the spatial DD would be

better able to deal with concerns related to shifting hedonic gradients than one that relies on

temporal variation in prices.

3 Data and Empirical Evidence

In the following section, we first provide an overview of our main data sources. We then

present evidence from summary statistics that assess the extent to which omitted variables

and post-disaster migration might impact our estimates. We lastly provide graphical evidence

to support our identifying assumptions.

Data Sources

Housing Data Housing transactions data come from Dataquick, Inc. and provide the

universe of housing sales in Florida between 2002 and 2012. For each property, the data
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include a property’s location and its physical characteristics (e.g. the number of bathrooms

and bedrooms) as well as information related to each of its transactions, including the sale

date and price. Of the 67 counties in Florida, we lose 13 counties because Dataquick does

not collect data for some rural counties, and another 3 counties because no digitized flood

insurance maps are available.14 With the remaining available counties, we clean the data

in several steps. First, we limit our analysis to arm’s length transactions of single-family

residential houses that are owner-occupied and remove those of properties that are missing

information on price, number of bathrooms and bedrooms, lot size, or square feet.15 We

calculate house age by subtracting the year a house was built from the year of sale. We drop

houses for which age is negative (2.78% of total sales transactions) as these are likely to

reflect land sales and the recorded attributes would likely be inaccurate. House prices are

deflated to January 2010 dollars using the Bureau of Labor Statistics Price Index for Housing

in the Urban South. We drop additional outliers by removing houses with prices below or

above the 1st and 99th percentile of the empirical price distribution, respectively.

Neighborhood and Spatial Attributes We augment the housing data by attaching

neighborhood (dis)amenities to each house, including crime, industrial activity, and other

spatial characteristics, from various other sources. First, we include neighborhood crime

statistics through county-by-year arrest rates from the Florida Department of Law Enforce-

ment. Next, we calculate an inverse-distance weighted average of onsite releases from all

Toxic Release Inventory (TRI) facilities within 3km of each house in the year of its sale to

control for industrial activity in the surrounding area. We additionally map each house to

nearby spatial amenities using Geographic Information System (GIS) software and shapefiles

obtained from the Yale University Map Department. This allows us to retain the distances

14The missing counties are: Baker, Collier, Dixie, Holmes, Lafayette, Leon, Levy, Putnam, Seminole,
Sumter, Suwannee, Taylor, and Union, Highlands, Sarasota, and Palm Beach.

15We also drop any sale records for which the number of bathrooms exceeds twenty or the number of
bedrooms exceeds thirty to omit outliers.
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between each house and the nearest airport, railroad, park, and coast.16

Flood Risk Data One of the most significant policy responses to flood risk in the United

States was the creation of the National Flood Insurance Program (NFIP) in 1968 (Howard

et al., 2016). The program aimed at providing affordable flood insurance coverage to the

nation’s public. One programmatic outcome was the creation of flood risk maps, called

Flood Insurance Rate Maps (FIRMs), which spatially differentiated almost all land across

the United States by underlying flood risk. Specifically, locations at high risk of inland floods,

known as Zone A, exhibit an annual flood risk of at least 1 in 100.17 Low flood risk zones

include Zone X, with an annual risk of inundation less than 1 in 100. Utilizing digitized

FIRMs across the state of Florida, we lastly match all properties to their NFIP-designated

flood zones using GIS, dropping all properties in the high risk coastal V zones to focus only

on inland flood risk across the high risk A zones and low risk X zones.18

Hurricane Events Data While enjoying its reputation as the sunshine state, Florida is

also at high risk for intense hurricane landfalls given that a majority of the state’s landmass

is a peninsula between the hurricane-active North Atlantic Ocean and the Gulf of Mexico.

Over the past 150 years, 40 percent of hurricanes in these basins have impacted Florida

(NOAA, 2016), exposing the state to hurricane losses from intense wind and rain. NFIP data

obtained through a Freedom of Information Act request provides detailed information on

each flood-related event such as number of claims, month and year of the event, and number

of policies at the county level. We recover flood-related hurricane events using these data.

Despite the high hurricane frequency, Florida has enjoyed periods of relative calm. From

16The main results of the paper rely on a specification that uses census tract fixed effects. Since we are
only able to capture a time-invariant measure of proximity to these (dis)amenities, we do not expect that
inclusion of these distance measures would greatly alter our main results.

17We define Zone A here to include Zone A, Zone AO, Zone AH, Zones A1-A30, Zone AE, Zone A99, Zone
AR, Zone AR/AE, Zone AR/AO, Zone AR/A1-A30, Zone AR/A.

18Flood insurance purchase is mandatory for properties in the SFHA with a federally backed mortgages.
Still, flood risk salience may be low during the home buying process since insurance uptake is generally low
and there is much cognitive complexity involved in the home buying process.
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2002 to 2012, Florida received hurricane landfalls only during 2004 and 2005. The hurricanes

did, however, lead to massive damage in Florida during these two years. We define our event

period as the Florida hurricane cluster that occurred from Hurricane Charley in August 2004

until Hurricane Wilma in October 2005. During this period, seven hurricanes and tropical

storms impacted Florida and led to more than $1.8 billion (real 2005 $USD) in insured flood

losses.19 Figure 8 displays the seven storm tracks. To give a sense of the unusual magnitude

of this cluster, the 2005 season was found by Nordhaus (2010) to be a quadruple outlier for

hurricane activity in the North Atlantic Ocean. Following 2005, Florida enjoyed an 11-year

hurricane “drought” after hurricane Wilma made landfall on October 24, 2005.20

Defining Treatment The final sample of housing data matched to various flood risk and

neighborhood attributes consists of 778,855 sales records. To geographically assess the impact

of exogenous storm shocks, we lastly collect county-event level data from the National Flood

Insurance Program on the number of claims, total policies in force, and confirmed payouts

for property losses.21 Relevant for flood salience, NFIP policies only cover water damage

and not wind losses. In the spirit of Hallstrom and Smith (2005), and to avoid conflating

flood risk salience with direct damages from the event, we drop all counties that received

at least 500 insurance claims in total across the seven hurricane period, designating these

counties as being directly hit by any of the hurricanes.22 We therefore only assess counties

that were not directly hit by the hurricanes. This includes near-miss counties, defined as

counties that geographically border a county that was directly hit, and those that were

never-hit, defined as counties that were neither hit nor nearly missed. Of our final housing

19The seven storms were Charlie (August 2004), Frances (September 2004), Ivan (September 2004), Jeanne
(September 2004), Dennis (July 2005), Katrina (August 2005), and Wilma (October 2005).

20Three tropical cyclone events led to some losses during the “drought”. Two hurricanes - Alberto and
Ike - did not make direct landfall and led to a less than $3 million in insured losses across the state in total.
Tropical Storm Fay impacted Florida in August 2008 but only led to $43.6 million in insured losses across
the state and never reached hurricane strength.

21The data were provided through a Freedom of Information Act request. The county-level data are
matched to each hurricane event in the NFIP data.

22In additional sensitivity analysis, we also define a hit as having at least 250 or 750 claims, or having at
least $5 million in flood loss payouts.
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data, 417,360 transactions are located in near-miss or never-hit areas. Figure 8 provides

a map of near-miss and never-hit counties using the 500 claims definition. Combining the

near-miss categorization with house FIRM information, we follow Hallstrom and Smith (2005)

and assume that only houses in high risk flood zone A of near-miss counties should have a

price impact due to flood risk salience. As such, we define properties in zone A (with at least

a 1 in 100 annual risk of inland flooding) as our treatment group of houses and those in the

X zone (with less than a 1 in 100 annual risk of inundation) as our control group.

Summary Statistics and Empirical Evidence

Table 1 provides summary statistics for house attributes by flood zone for houses in

near-miss counties that sold before the hurricane event.23 Columns (1) - (4) present the

means and standard deviations for house characteristics. Column (5) then tests for the

equality of means across treatment and control groups. On average, houses in the A zone

are more expensive relative to those in the X zone, where the average house prices for A

and X zone houses are $236,000 and $192,000, respectively. A comparison of the house

characteristics from each group makes clear the likely source of the price difference: houses

in the high risk floodplain are attached to more desirable characteristics, on average. For

example, Zone A houses are closer to the coast and parks, amenities for which households

have shown positive willingness to pay (Smith et al., 2006; Conroy and Milosch, 2011; Nyce

et al., 2015), and farther from highways and airports, which are often considered disamenities

as a result of associated noise and congestion (Smith, Poulos, and Kim, 2002; Pope, 2008;

Ahlfeldt and Maennig, 2015). These differences in observable characteristics by floodplain

potentially suggest systematic differences in unobserved characteristics as well, motivating

the use of a DD framework. The same comparison by flood zone for houses in the never-hit

group in Table 2 reveals similar differences between A and X zone houses.

Assuming that the changes over time for houses in the control group represent how those

23The near-miss designation is based on the 500-claim definition. Our results are robust to alternative
near-miss definitions.
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in the treatment group would have behaved had the event not occurred, the DD estimate

returns the causal impact of the event on housing prices in the treated group. While Tables 1

and 2 demonstrate that there are clearly observable (and thus, likely unobservable) differences

between those in our treatment and control groups, DD will account for these differences as

long as they are time-invariant, a requirement that is commonly referred to as the parallel

trends assumption. We assess the validity of this assumption in Figure 8, which plots the

prices for treatment and control houses in the near-miss group both before and after the

treatment time period. To account for observable differences across houses, we first regress

prices on house characteristics and fixed effects for each region and year. We then aggregate

the residuals to the floodplain and quarter-of-year level, and plot these residuals over time

using local linear regression (Fan and Gijbels, 1996). Figure 8 shows that adjusted prices

of the treated group before the event period exhibits a similar trend as those in the control

group, even though they are generally higher compared to their control group counterparts.

While lack of evidence of pre-existing trends in Figure 8 is supportive of the common

trends assumption, A and X zone houses could begin to trend differently after the event

period, threatening the causality of the DD estimates. To check for this possibility, Figure 8

plots the same figure as above but for houses in the never-hit group. Notice that immediately

following the treatment period, A zone houses are about 10% higher than their X zone

counterparts. However, by the middle of the year 2010, the difference widens to be around

20%. This suggests that had A zone houses in the near-miss group not been exposed to the

event, their prices would have been ∼10% higher compared to their X zone counterparts.

Our triple-differences specification is set up to account for this type of differential trends

between our treatment and control groups. One potential concern is that A zone houses in

the never-hit group can similarly experience salient impacts from the flood events. While

this may be possible, Figure 8 depicts suggestive evidence that this is not the case as A and

X zone houses trend in a similar manner immediately after the event period.

Finally, we assess the potential concern in our data that the underlying population (and
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preferences) in affected areas may change in response to disasters.24 Table 3 provides evidence

of neighborhood turnover as a result of the flood events. Each column represents a separate

regression where the dependent variable is an indicator for the race or ethnicity of the

homebuyer as self-reported on the mortgage application.25 Panel A examines changes in the

composition of homebuyer race using the DD specification in equation (2.4), whereas Panel B

does the same except uses the cross-section comparison as laid out in specification in equation

(2.6). The estimates of interest in panels A and B are the interaction terms ZoneA× Post

and ZoneA×NearMiss, respectively. ZoneA×Post gives the relative change in homebuyer

race in the A zone (vs. the X zone) after the event has occurred. While the changes are not

large, it is apparent that the share of Hispanics decreases over time in response to the flood

event, which is suggestive of post-disaster sorting. In contrast, the magnitude of differences

are all smaller in the cross-sectional comparisons in Panel B, where none of the estimates

are statistically significant. While the magnitudes of differences are not large, there may be

other aspects of the neighborhood turnover that we have not captured as homebuyer race is

only one of many facets that defines the character of a neighborhood.

Our spatial DD would be robust to these types of neighborhood changes over time;

however, it requires that the hedonic price functions are comparable across space after various

house and spatial controls are included. We assess this spatial analog to the common trends

assumption in Figure 8. The figure plots 1) the average price difference between A and X

zone sales in the never-hit counties against the distance between each house to the nearest

near-miss house, and 2) the same plot for sales in the near-miss counties by distance between

each house and the nearest never-hit house. Specifically, the price differences are recovered

using a regression of the log(price) on all interactions between an A zone dummy variable

24In other words, that different types of people, with different preferences for flood risk, may enter or leave
the housing market following a disaster.

25Information on homebuyer race are merged in the housing transactions data using data from the Home
Mortgage Disclosure Act (HMDA). This follows the procedure outlined in Bayer et al. (2016), where the
merge is based on information that is present in both the transactions and HMDA data, including the lender,
loan amount, transaction date and census tract. We were able to match 63% of the housing transactions.
Merge diagnostics comparing to Census data are available upon request.
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and 5km-distance bins:

lpricej,t = β0 + β1zoneAj +
∑
k

β2,kdistj +
∑
k

β3,kdistj × zoneAj + ej,t

where the coefficients on the interaction terms β3,k are plotted in the figure. This regression

is done first for the near-miss group, and then for the never-hit group, resulting in two sets

of relative price differences in two spatially disparate areas. All sales used are prior to the

hurricane event. In the figure, note that the distance to the nearest near-miss house in the

top axis is flipped. This is done so that moving from left to right for both axes would imply

increasing exposure to the hurricane event: For never-hit houses (top axis), those that are

farther from near-miss houses are also farther from areas that would be directly impacted by

the hurricane cluster; this is generally the opposite for near-miss houses (bottom axis) as

those that are farther from never-hit houses are generally closer to areas that would be hit

by the hurricane cluster. Comparison of the two price functions finds that while there are

clearly level differences in the relative impact of living in zone A, the price functions follow a

similar trend. This gives us more confidence to use a spatial difference-in-differences design

that makes comparisons across geographic space to deal with the Kuminoff and Pope (2014)

critique.

4 Results and Discussion

Main Results

Table 4 presents the DD estimates that compare changes in near-miss housing prices for A

zone homes over time relative to X zone homes. Each column represents a regression. Standard

errors are clustered at the census tract level to allow for spatial correlation between house

observations. The baseline specification in column (1) controls for house and neighborhood

characteristics only. The importance of limiting comparisons across large geographic areas
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is clear after the inclusion of spatial fixed effects beginning in column (2). This baseline

estimate in column (1) finds a salience impact of -1.2 %, which is not statistically significant at

conventional levels. The estimate more than doubles in column (2) and increases in precision

once region fixed effects are included.26 The specifications that follow in columns (3) through

(5) increases the geographic specificity of the spatial fixed effects from inclusion of Core-Based

Statistical Area fixed effects to county fixed effects, and then lastly to census tract fixed effect.

These DD estimates find salience impacts ranging from -3.2% to -4.4%, and are statistically

different from 0 at the 5% and 10% levels.

We next turn to our triple-differences design. As one can think of the DDD estimate

as the difference between two sets of DD estimates, Table 5 presents the triple-differences

estimate as such. Columns (1) through (3) show the DD design as the change in the pre- and

post- prices for A zone houses compared to a similar change for the X zone houses, where the

DD estimate of -3.5% (with census tract fixed effects) is given in row 3 of column (3). Turning

to columns (4) through (5), the same DD estimate is recovered for houses in the never-hit

group. Consistent with Figure 8, we see that A zone houses in these areas experience a 4.3%

increase in house prices relative to their X zone counterparts, suggesting that A zone houses

in the near-miss group would have experienced this change had it not been for the disaster

event. The DDD estimate of -7.8% that accounts for this is given in row 4 of column (6) as

the difference between the DD estimates in the near-miss and never-hit groups.

Table 6 presents the triple-differences estimates using the regression specification in

equation (2.5). Again, the baseline specification in column (1) includes house characteristics

but omits geographic fixed effects. Columns (2) through (5) adds additional spatial fixed

effects as in the DD specifications. The estimates that contain geographic fixed effects range

from -5.1 % under region fixed effects (not statistically significant) to -8.0% with census tract

fixed effects (statistically significant at the 5% level). As predicted by the graphical analysis

26The regions are defined by the Florida Public Archeology Network (FPAN), which is a program of the
University of West Florida. FPAN divides the state of Florida into 8 distinct regions: northwest, north
central, northeast, east central, central, west central, southwest, and southeast.
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and previous DD mean comparisons, the DDD estimate of salience is about two times the

DD estimate now that controls for unobserved differential trends over this period between

our treatment and control groups are incorporated.

Figure 8 plots the DDD impacts over time beginning from before the treatment period

to after. Estimates are recovered from a single regression that allows for leads and lags

of the treatment, where the specification includes fixed effects at the census tract level.

Specifically, we take the main DDD specification and interact zoneAj × NearMissj and

zoneAj × NearMissj × Postt with a full set of year dummies from 2002 to 2012. The

coefficients on the interactions return the relative impact on sales prices of houses in the

A zone and near-miss group in each year (before and after the event period). In the three

years prior to the hurricanes, estimated impacts are small in magnitude and statistically

insignificant, ranging between -0.6% to 1.1%. That the leads to treatment finds very little

evidence of an effect bolsters the case that the hurricane cluster was exogenous and unexpected.

Beginning from 2005, housing prices initially fall by 6.6% and continue to oscillate on a

downward trend until a low point of -14.3% in the year 2009, after which the impacts begin

to rebound, until reaching about -3.8% in 2012, our final year of data. While the estimated

impact may appear to follow the great recession and its recovery, these impacts should be

net of any macroeconomic effects as long as the recession’s impact on near-miss houses in

A versus X zones are similar so that any differential impact between A and X houses are

appropriately captured by their differences over time in the never-hit group.

Unlike other market transactions, those in the housing market are associated with higher

search and switching costs in terms of time. This is a first reason why we might observe

a lagged impact on housing prices as opposed to an instantaneous increase in insurance

policy take-up as found in Gallagher (2014). Second, some of the lag could be attributed to

in-migration from hurricane-impacted areas. This is supported by Table 7, which presents the

shares of house sales by directly impacted and near-miss areas (never-hit houses are removed),

before and after the hurricane event. Furthermore, the deviation from the pre-hurricane
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distribution of buyers is much larger when examining the years after the event but before

2010 compared to the period after 2009; this coincides with when the salience impact peaks,

which additionally suggests that migration from heavily impacted areas could be driving the

trajectory of salience. Though only suggestive (as this could also be driven by new buyers or

people who are migrating from outside of the state), it does point to a potential explanation

as to why the largest price decreases come several years later as people exposed to impacted

areas gradually migrate out of those areas. Flood risks are likely to be most salient for this

group of people, and, as previously discussed, there are time costs associated with search

and moving. These all contribute to the increasing size of the salience impact over time.

Coincidentally, this also highlights an additional reason in support of a spatial-DD approach,

the results of which are discussed next, as part of the observed impact is potentially driven

by compositional changes in the population of buyers over time.

While the DD and DDD estimates are well-suited for dealing with bias from omitted

variables, the use of time variation potentially includes prices from different hedonic equilibria.

We check the robustness of our results by estimating salience impacts with the specification

in equation (2.6), which utilizes post-hurricane transactions only. This estimates salience

in the spirit of Kuminoff and Pope (2014) using a DD framework by comparing A and X

zone prices in the near-miss group to a similar difference in the never-hit group, all after the

hurricanes have occurred. We estimate this impact by pooling all post-event years, as well

as impacts for individual years using only the data from that particular year. Importantly,

limiting comparisons to houses in a particular year after the flood event allows us to avoid

the assumption of a time-invariant hedonic gradient.27 Table 8 presents these results. Each

cell displays the DD estimate and robust standard errors from a separate regression; moving

from left to right, each column presents estimates from the inclusion of fixed effects at finer

levels of geography. Each row contains all estimates from all post-years (“Overall”) followed

by individual years from 2006 to 2012. Depending on the level of the fixed effects included,

27Implicit to this approach is the assumption that housing across Florida is characterized by a single
housing market.
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the pooled estimates ranges from -5.4% (tract fixed effects, not statistically significant) to

-12.3% (region fixed effects, 5% statistical significance).

The estimates for individual years in Table 8 are all generally larger, although many are

not significantly different from 0 at conventional levels. The largest impacts are found in

2009, ranging from -17.4% to -12.3%, which are statistically significant at the 5-10% levels.

The smallest impacts are found in 2012, where estimates range between -12.6% to 3.1%, none

of which are statistically significant. We attribute the lagged salience effect to potentially

indicate substantial search and moving costs in the housing market. However the estimates in

the latter years are consistent with the finding of previous literature that flood risk salience

eventually wanes in the years following an event as individuals downwardly revise their flood

risk probability after periods of calm (e.g., Atreya, Ferreira, and Kriesel (2013) and Gallagher

(2014)). Compared to the DD estimates in Table 4, most of the spatial DD estimates find

a larger negative salience impact. The direction of the bias from the pre- and post- DD is

consistent with the out-migration (in-migration) of those with high (low) willingness to pay to

avoid flood risk after the hurricane events. In other words, were one able to prevent this type

of sorting, then the DD estimate using pre- and post- event sales would be larger in magnitude

than what it actually recovered, since it would not confound differences in willingnesses to

pay across different types of people. Taken together with previous literature’s observation of

differential patterns of post-disaster migration (e.g., Smith et al. (2006); Landry et al. (2007);

Groen and Polivka (2010); Strobl (2011), Deryugina, Kawano, and Levitt (2014)), our results

imply that it is thus important to acknowledge the potential for hedonic equilibria to shift in

response to disasters and to think about the implications this may have for willingness to

pay estimation.

Robustness

Before concluding, we assess the robustness of our results. While the paper thus far has

treated exposure to flood risk and hurricane events as a binary variable, the information
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treatment (whether it be along the dimensions of risk zones or distance to directly impacted

areas) is likely to be continuous, and could result in our control sales receiving “treatment.”

To assess how discretization of treatment could impact our results, we re-estimate various

specifications that use a more strict definition of a control group. First, we assess the impact

of dropping never-hit county sales that are close to near-miss counties. Specifically, in Table

9, we compare the main DDD estimate in Table 6, column (5) with DDD estimates that drop

never-hit sales within 5, 10, 15 and 20 kilometers to the nearest near-miss house (respectively

presented in columns 2 through 5). Even while requiring our control units to be farther

from near-miss counties, our estimated salience impacts are generally stable, suggesting that

information spillovers are limited across near-miss and never-hit areas are limited.

We also assess the assumption that households in the high-risk floodplain internalize

additional information from flooding in neighboring counties, while those in the low-risk

floodplain do not. We do this by re-estimating the traditional DD regression specification

but drop A zone houses that are within d meters of an X zone house, where d ranges from

200 to 1000 meters. We present these results in Table 10. Compared to the baseline estimate

that uses temporal variation in the hurricane treatment event, the salience estimate generally

increases from -3.5% to -4.4% as we require X zone sales to be farther from A zone houses.

This is likely due to treatment spillovers from A to X zones, which in this case, biases our

salience estimate downward.

As some properties are sold multiple times, we are able to estimate our DD and DDD

models with house fixed effects, which would allow one to control for time-invariant, house-

specific unobserved factors that could impact price. Table 11 presents these estimates along

with our baseline estimates with tract fixed effects. Inclusion of house fixed effects leaves us

with about 20% of our original sample and significantly reduces the precision of our estimates.

Still, we note that the magnitudes of the estimates are similar if not larger than the baseline

estimates.

One potential concern for the identification of flood risk in hurricane events is that, in
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addition to flood risk, hurricanes also transmit information on wind and storm surge risk.

We do not include homes in the coastal flood risk zones so our analysis does not address, but

is also unlikely to be confounded by, storm surge risk. Regarding wind risk, risk zones are

typically highly correlated with distance to the coast and smoothly transition across large

distances from higher to lower risk.28 In contrast, flood risk is geographically heterogeneous,

varying sharply across small distances, relative to Florida’s wind zones. Given our spatial

fixed effects, i.e. conditional on being within some region (e.g. census tract), wind risk should

thus be uncorrelated with flood risk zones, allowing our difference-in-difference design that

utilizes A and X zone variation to appropriately control for wind risk’s impact on our salience

estimates.

Lastly, we perform several placebo tests in Table 12 to generate additional evidence in

support of a causal interpretation of estimated impacts. To do this, we randomly re-assign

one dimension of exposure for each sale transaction in the sample and then re-estimate

the DDD specification. We again focus on the specification with census tract fixed effects.

Beginning from column (1), we randomly assign sales to either the near-miss or never-hit

groups. Column (2) retains the actual near-miss and never-hit categorization, but randomly

assigns the floodplain zones (i.e. A as opposed to X). In the remaining columns, we randomly

assign sales to the pre- or post- treatment period, effectively randomizing the treatment date.

Column (3) does this for the entire sample, whereas column (4) limits the treatment date

randomization to sales in the post-treatment period. In each case, the DDD estimate is

small in magnitude compared to our main estimate of 8.0% and is not statistically significant.

These placebo tests reinforce that our estimated price impacts are causal and suggest that

there is indeed a flood risk salience effect.

28For example, see the following wind risk map of Florida posted by Hernando County:
http://www.co.hernando.fl.us/bldg/wind.htm
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5 Conclusion

In this paper, we present new evidence on flood risk salience. Utilizing a decade of data

from across the state of Florida and exploiting an anomalous hurricane cluster preceded and

followed by periods of unusual calm, we compare salience estimates across three approaches

including time-varying difference-in-differences, triple-differences, and spatial difference-in-

differences designs. We note important limitations that remain in the analysis. First, we are

unable to disentangle the exact individual flood risk belief updating structure that we term

salience in this paper. Notably, we cannot distinguish the difference between individuals

upwardly revising subjective flood risk probabilities after a flood event versus individual

(ir)rational inattention to flood risk during the complex home buying process. Second, it

remains an open question as to how the magnitude of post-disaster flood risk salience relates

to rational risk perception. Lastly, while our main specification assumes that the flood

information treatment is uniformly distributed across near-miss counties yet does not reach

never-hit counties, our robustness analysis suggests some level of information spillover that

could attenuate our estimates. Thus, our results can be thought of as a lower bound on the

true salience effect.

Keeping these limitations in mind, our various quasi-experimental approaches all find

robust evidence of a salience effect in Florida in response to the cluster of hurricane events in

the mid-2000’s. These salience impacts range from -3 to -8%, on average. In addition, we find

evidence that disasters may impact more than salience, even in locations just missed by direct

damage. Specifically, in the spirit of Kuminoff and Pope (2014), and motivated by a recent

but growing literature on differential post-disaster migration, we detect changes in homebuyer

demographics following a disaster, which could indicate different buyer populations in pre-

versus post- disaster hedonic equilibria. To avoid confounding salience estimates with these

concurrent changes, we use a spatial DD approach and still find robust salience effects, which,

in our setting, are twice as large as the estimates recovered using a DD approach involving

price comparisons across time. Ultimately, these findings highlight the importance of careful
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interpretation surrounding salience results, as salience identification may be empirically

intermingled with other time-variant factors that could impact the hedonic equilibria. In

addition, and not explored by this work, it remains an open question how the magnitude of

post-disaster flood risk salience correlates with rational risk perception, as individuals may

under- or over-perceive the risk directly following the shock. As flooding imposes tremendous

risk to life and property across much of the globe, understanding the dynamics of public

flood risk perception has important implications for flood insurance and disaster policy, the

benefits transfer literature, and our understanding of natural disaster resilience.
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6 Tables

Table 1: Housing Attributes by Flood Zone (Near-Miss Counties Only, Pre-Event)

Treat (A) Control (X)

Mean SD Mean SD t-Statistics Reject

House Atrributes (1) (2) (3) (4) (5) (6)

Price 236,185.30 250,680.30 192,295.40 141,351.20 23.92 Y

Age 17.35 16.70 17.13 16.79 1.08 N

Bathrooms 2.17 0.68 2.13 0.59 6.08 Y

Bedrooms 3.09 0.72 3.14 0.69 -5.92 Y

Square footage 1,879.80 742.90 1,795.80 650.50 10.65 Y

Toxic release inventory 9,796.50 55,107.00 5,938.00 51,266.40 6.24 Y

Distance to coast 27.42 31.95 40.51 31.04 -35.13 Y

Distance to river 83.03 70.45 47.79 48.76 57.83 Y

Distance to park 19.63 15.73 26.73 17.60 -33.94 Y

Distance to railway 6.93 5.89 6.14 5.26 12.49 Y

Distance to airport 22.77 16.76 16.66 12.27 40.23 Y

Distance to highway 2.71 4.04 1.64 2.19 37.47 Y

Distance to city 0.24 1.82 0.15 1.34 5.66 Y

Crime rate 1,118.50 510.30 1,059.30 485.50 10.12 Y

Observations 7,585 85,872

Notes: This table compares mean attributes of house sales of A and X zones in near-miss counties only. At-

tributes are taken from houses selling before the hurricane event period. Crime rate is measured as arrest rate

per 100,000 people, distances are measured in kilometers, and Toxic Release Inventory (proxying for industrial

activity) is the inverse-distance weighted average of onsite releases. The t-statistics to assess the equality of

means between the A and X groups are provided in column (5) and an indicator of whether the null of equal

means is rejected is given in column (6).
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Table 2: Housing Attributes by Flood Zone (Never-Hit Counties Only, Pre-Event)

Treat (A) Control (X)

Mean SD Mean SD t-Statistics Reject

Atrributes (1) (2) (3) (4) (5) (6)

Price 210,126.80 226,162.50 151,052.50 119,848.70 20.75 Y

Age 24.39 16.06 27.01 18.50 -6.32 Y

Bathrooms 2.09 0.72 1.98 0.58 8.59 Y

Bedrooms 2.93 0.80 2.97 0.68 -2.70 Y

Square footage 1,831.60 799.20 1,666.10 618.90 11.70 Y

Toxic release inventory 21,668.60 317,561.40 8,425.10 136,255.20 3.95 Y

Distance to coast 26.25 24.95 30.00 22.63 -7.32 Y

Distance to river 55.76 45.35 40.38 45.54 15.00 Y

Distance to park 14.27 12.08 17.93 11.64 -13.94 Y

Distance to railway 8.28 6.78 6.10 5.45 17.53 Y

Distance to airport 43.33 31.35 31.01 28.18 19.32 Y

Distance to highway 1.56 1.65 1.34 1.39 6.97 Y

Distance to city 1.25 2.87 0.34 2.06 19.20 Y

Crime rate 1,037.00 545.60 1,161.00 543.40 -10.13 Y

Observations 2,063 44,645

Notes : This table compares the same set of house attributes as in Table 1 except for sales in never-hit counties.

The sample is limited to all house sales before the event period. The t-statistics to assess the equality of means

between the A and X groups are provided in column (5) and an indicator of whether the null of equal means is

rejected is given in column (6).
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Table 3: Changes in Homebuyer Characteristics

A. Before vs. After Event Comparison

White Black Hispanic

A Zone -0.00895 -0.00921** 0.0245***

(0.00673) (0.00423) (0.00572)

post -0.0874 0.0437 0.0711

(0.0588) (0.0370) (0.0500)

A Zone × post 0.0152* 0.00457 -0.0230***

(0.00861) (0.00541) (0.00732)

Observations 152,578 152,578 152,578

B. Near Miss vs. Never Hit Comparison

White Black Hispanic

A Zone 0.0164 -0.00161 -0.0135

(0.0111) (0.00744) (0.00908)

NearMiss 0.0188 0.178 -0.304

(0.365) (0.244) (0.299)

A Zone × NearMiss -0.00948 -0.00285 0.0154

(0.0124) (0.00829) (0.0101)

Observations 131,367 131,367 131,367

Notes: This table assesses changes in homebuyer race and ethnicity.

Panel A regresses an indicator for homebuyer race on a post-event

dummy, an A zone dummy, and their interaction, limiting the sample

to houses of near-miss counties only. Regressions in Panel B use only

post-event sales and regresses the buyer characteristic on a near-miss

dummy, an A zone dummy, and their interaction. Standard errors in

parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Difference-in-Differences

(1) (2) (3) (4) (5)

A Zone 0.079∗∗∗ 0.088∗∗∗ 0.087∗∗∗ 0.094∗∗∗ 0.054

(0.029) (0.030) (0.031) (0.031) (0.035)

post 0.640∗∗∗ 0.017 -0.161∗ -0.238∗∗∗ -0.181∗∗∗

(0.026) (0.071) (0.086) (0.056) (0.056)

A Zone× Post -0.012 -0.032∗ -0.038∗∗ -0.044∗∗∗ -0.035∗∗

(0.019) (0.016) (0.017) (0.017) (0.016)

Observations 245,774 245,774 245,039 245,774 245,774

Controls:

Nbd. & House Attributes Yes Yes Yes Yes Yes

Region by Year FE No Yes No No No

CBSA by Year FE No No Yes No No

County by Year FE No No No Yes No

Tract by Year FE No No No No Yes

Notes: This table presents results of the DD specification in Equation 2.4 comparing sales

before and after the hurricane cluster event. All specifications are based on a 500-hit defini-

tion and use near-miss counties only. Controls for house and neighborhood characteristics

include number of bathrooms, square footage, and age of the house; distances to the nearest

coast, river, park, railway, airport,highway, and city, weighted TRI onsite releases and crime

rate (arrest rate per 100,000 population). ‘CBSA’ represents Core-based Statistical Area.

Robust standard errors are clustered at the Census Tract level in parentheses. ∗ p < 0.10,

∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Difference-in-Differences-in-Differences (Mean Comparisons)

Sample NearMiss (NM) Never Hit (NH)

∆ lnP Post Pre ∆NM Post Pre ∆NH

(1) (2) (3) (4) (5) (6)

A zone 10.489 10.766 -0.216 11.834 11.79 0.044

(0.387) (0.394) (0.216) (0.213)

X zone 10.47 10.712 -0.181 11.745 11.745 0.000

(0.365) (0.371) (0.212) (0.212)

DD (β3) -0.035 0.043

(0.016) (0.029)

Difference in DD (π) -0.078

(0.033)

Notes: This table provides preliminary triple-differences estimates by using estimates

from two separate DD specifications, one for the near-miss group and the other for the

never-hit group. Tract by year level fixed effects are included in addition to the same

set of house and neighborhood level controls in column (5) of Table 4. Robust standard

errors are clustered at the Census Tract level in parentheses.
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Table 6: Difference-in-Differences-in-Differences

(1) (2) (3) (4) (5)

A Zone 0.165∗∗∗ 0.165∗∗∗ 0.133∗∗∗ 0.118∗∗∗ 0.044∗

(0.044) (0.044) (0.033) (0.033) (0.025)

post -0.048 0.056 0.048 -0.022 -0.043

(0.046) (0.049) (0.052) (0.037) (0.035)

A Zone × post 0.023 0.019 0.024 0.029 0.050∗

(0.031) (0.031) (0.030) (0.030) (0.029)

NearMiss 0.098∗∗∗ -0.037 -0.234 0.120 0.230∗∗∗

(0.019) (0.037) (0.145) (0.207) (0.030)

A Zone × NearMiss -0.086 -0.082 -0.055 -0.035 0.003

(0.053) (0.055) (0.045) (0.046) (0.043)

post × NearMiss 0.017 0.024∗ 0.029∗∗ 0.026∗∗ 0.033∗∗∗

(0.012) (0.013) (0.012) (0.012) (0.011)

A Zone × post × NearMiss -0.057 -0.051 -0.057∗ -0.068∗∗ -0.080∗∗

(0.035) (0.035) (0.034) (0.034) (0.033)

Observationsa 360,918 360,918 359,856 360,918 360,918

Controls:

Nbd. & House Attributes Yes Yes Yes Yes Yes

Region by Year FE No Yes No No No

CBSA by Year FE No No Yes No No

County by Year FE No No No Yes No

Tract by Year FE No No No No Yes

Notes: This table presents the DDD estimates from the specification in Equation 2.5. The

same set of controls are used as that in Table 4. Robust standard errors are clustered at the

Census Tract level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

a The difference in observation count in column (3) is attributed to 13 counties in our data

that are not considered as being a part of a CBSA (i.e. the CBSA is missing). Our results

are robust to retaining those observations without a CBSA designation and including an

indicator for a missing.
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Table 7: Share of Sales by Impacted and Near-Miss Areas (%)

Hit Near-Miss

Pre-Hurricane 65.54 34.46

Post-Hurricane 61.05 38.95

Post, pre-2010 59.5 40.5

Post, post-2009 64.04 35.96

Notes: This table presents shares of house

sales by impacted (“hit”) and near-miss ar-

eas, removing sales in never-hit areas. It

then breaks the post-hurricane years into

before and after 2009 (when we see our

largest salience impact).
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Table 8: Difference-in-Differences (Post-Event Only)

A × NearMiss (1) (2) (3) (4) (5)

Overall -0.0671 -0.123** -0.0966** -0.0848* -0.0537

(0.0512) (0.0497) (0.0453) (0.0450) (0.0466)

2006 -0.121** -0.108** -0.0942* -0.0917* -0.0515

(0.0511) (0.0515) (0.0504) (0.0499) (0.0538)

2007 -0.109 -0.0753 -0.0673 -0.0549 -0.0443

(0.0874) (0.0880) (0.0884) (0.0861) (0.0791)

2008 -0.182 -0.151 -0.123 -0.0757 -0.0211

(0.113) (0.111) (0.111) (0.109) (0.124)

2009 -0.174** -0.159** -0.136* -0.139** -0.123*

(0.0711) (0.0736) (0.0706) (0.0687) (0.0722)

2010 -0.107 -0.124* -0.0648 -0.0765 -0.0968

(0.0670) (0.0708) (0.0679) (0.0673) (0.0775)

2011 -0.107 -0.148** -0.0960 -0.0827 -0.0220

(0.0718) (0.0748) (0.0682) (0.0665) (0.0675)

2012 -0.103 -0.126 -0.0794 -0.0530 0.0307

(0.0914) (0.0935) (0.0805) (0.0801) (0.0889)

Controls:

Nbd. & House Attributes Yes Yes Yes Yes Yes

Region FE No Yes No No No

CBSA FE No No Yes No No

County FE No No No Yes No

Tract FE No No No No Yes

Notes : This table presents spatial DD estimates using post-hurricane cluster data only. Each

cell represents a DD estimate of interaction between A zone×post from a separate regression

comparing A and X zone houses in near-miss and never-hit counties. The same set of house

and neighborhood level controls are used as that in column (5) of Table 4. Robust standard

errors are clustered at the Census Tract level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 9: Remove Never Hit Sales within X km of Near Miss County

DDD

(1) (2) (3) (4) (5)

Baseline 5km 10km 15km 20km

A Zone×post×NearMiss -0.080** -0.079** -0.078** -0.087** -0.075**

(0.033) (0.033) (0.033) (0.034) (0.036)

Observations 360,918 360,323 358,692 353,616 347,598

Notes: This table compares the main DDD estimate in Table 6, column (5) with DDD

estimates that drop never-hit sales within 5, 10, 15 and 20 kilometers to the nearest near-

miss house (respectively presented in columns 2 through 5). The same controls from Table

6, column (5) are used for each regression. Robust standard errors are clustered at the

Census Tract level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Zone A-X Spillover Effect

(1) (2) (3) (4) (5) (6)

Baseline 200m 400m 600m 800m 1km

A zone 0.054 0.052 0.05 0.054 0.058 0.062

(0.035) (0.038) (0.045) (0.052) (0.062) (0.073)

post -0.181*** -0.175*** -0.157*** -0.150*** -0.133** -0.083

(0.056) (0.055) (0.057) (0.058) (0.059) (0.064)

A zone×post -0.035** -0.033** -0.035** -0.038** -0.039** -0.044**

(0.016) (0.016) (0.016) (0.017) (0.017) (0.018)

Observations 245,774 236,721 205,460 174,252 147,660 114,908

Notes: This table compares the main DD estimate in Table 4, column (5) with DD estimates

that drop X zone houses where the nearest A zone house is 200, 400, 600, 800, and 1000 meters

away. The controls from Table 4, column (5) are used for each regression. Robust standard

errors are clustered at the Census Tract level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 11: House Fixed Effects

DD

(1) (2)

Baseline House FE

A zone× post -0.035** -0.047

(0.016) (0.034)

Observations 245,774 51,420

DDD

(3) (4)

Baseline House FE

A zone×post×NearMiss -0.080** -0.132

(0.033) (0.097)

Observations 360,918 77,828

Notes: This table compares the main DD and DDD es-

timates respectively in Table 4 column (5) and Table

6 column (5) with house fixed effect estimates. Robust

standard errors are clustered at Census Tract level in

parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 12: Placebo Checks

Random NearMiss v. Flood Plain Treatment Dates Treatment Dates

Assignment: NeverHit (A v. X Zone) (Any Year) (post-2005)

(1) (2) (3) (4)

A Zone 0.044 0.004 0.056∗∗ 0.081∗∗∗

(0.030) (0.008) (0.027) (0.023)

post -0.036 -0.039 -0.008 0.007

(0.035) (0.036) (0.006) (0.007)

A Zone × post -0.018 0.002 0.036 -0.022

(0.018) (0.011) (0.031) (0.029)

NearMiss -0.004 0.243∗∗∗ 0.254∗∗∗ 0.258∗∗∗

(0.004) (0.028) (0.030) (0.030)

A Zone × NearMiss 0.001 -0.004 -0.022 -0.051

(0.013) (0.009) (0.044) (0.041)

post × NearMiss 0.009∗ 0.027∗∗ 0.007 -0.005

(0.005) (0.013) (0.006) (0.008)

A Zone × post × NearMiss 0.015 0.002 -0.047 0.016

(0.019) (0.012) (0.032) (0.031)

Observations 360,918 360,918 360,918 360,918

Notes: This table presents placebo checks for the DDD specification. Regressions randomly assigns houses

spatially in Columns (1) and (2) and temporally in (3) and (4). Column (1) randomly assign sales to either

the near-miss or never-hit groups. Column (2) randomly assigns the floodplain zones (i.e. A as opposed to X).

Randomized treatment dates in the last two columns randomly assign each house to either before or after the

disaster event. Column (3) does this for the whole sample, whereas column (4) does this for only post-treatment

houses. Controls for all specifications correspond to that in column (5) of Table 6. Robust standard errors are

clustered at the Census Tract level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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7 Figure Captions

Figure 1: 2004-2005 Florida Hurricane Cluster

Figure 2: Counties by Hurricane Exposure (500 Claims Definition)

Figure 3: Parallel Trend Test in Near-Miss Counties

Figure 4: Parallel Trend Test in Never-Hit Counties

Figure 5: Parallel Trend Test in Space

Figure 6: DDD Estimates Over Time
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8 Figures

Notes: Figure 8 plots the tracks of seven hurricane and tropical storms that led to flood insurance claims in
Florida from 2004 to 2005. The authors generated the figure from the ICAT Damage Estimator tool available
online at http://www.icatdamageestimator.com/viewdata.

Figure 1.
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Notes : This figure uses National Flood Insurance Program (NFIP) data to illustrate the status of each county
after the cluster of hurricane events hit in Florida between August 2004 and October 2005. Hit is defined as
there being at least 500 claims at the county level, near-miss is defined as counties adjacent to hit counties,
and never-hit are the remaining counties.

Figure 2.
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Notes : This figure compares the price trends of zone A home sales to zone X home sales in near-miss counties.
We first regress log sale price on house attributes, neighborhood controls, and region by year fixed effects for
all near-miss counties sales. Next, we collapse the residuals obtained from the regression to the quarter level
and then plot the residuals over time using local linear regression.

Figure 3.

49



−
.1

0
.1

.2
R

es
id

ua
l

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Year

A Zone X Zone

Notes : This figure compares the price trends of zone A home sales to zone X home sales in never-hit counties
following the same approach in Figure 8.

Figure 4.
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Notes: The figure plots 1) the average price difference for A and X zone sales in the never-hit counties
against the distance between each house to the nearest near-miss house (top x-axis), and 2) the average price
difference for A and X zone sales in the near-miss counties by distance between each house and the nearest
never-hit house (bottom x-axis). Note that the distance to the nearest near-miss house in the top axis is
flipped. This is done so that moving from left to right for both axes would imply increasing exposure to
the hurricane event: For never-hit houses (top axis), those that are farther from near-miss houses are also
farther from areas that would be directly impacted by the hurricane cluster; this is generally the opposite for
near-miss houses (bottom axis) as those that are farther from never-hit houses are generally closer to areas
that would be hit by the hurricane cluster.
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Notes: This figure plots the DDD estimate by each year before and after the disaster period with 90%
and 95% confidence bands. The coefficients are recovered from a regression that expands the main DDD
specification to allow for a full set of year dummies from 2002 to 2012.

Figure 6.
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